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Generalised virial equation of state for natural gas systems
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Abstract

In this work we present a generalised virial equation of state for natural gas systems under custody transfer conditions. The model is based on
corresponding states expressions for the second and third virial coefficients with argon as the reference fluid. These functional forms involve
12 adjustable coefficients. For the extension to mixtures we propose a one-fluid mixture model with binary interaction parameters in the
combining rules for the mixture critical temperature and density. We obtained overall average absolute deviations (AAD) of 0.04 and 0.08%
in pure-fluid compression factors and speeds of sound; AADs of 0.07 and 0.19% in compression factors and speeds of sound, respectively, of
binary mixtures and AADs of 0.047, and 0.13% in natural gas compression factors and speeds of sound, respectively. These results compare
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avourably with equivalent calculations with other generalised virial coefficient models.
2005 Elsevier B.V. All rights reserved.
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. Introduction

In a previous communication, Estela-Uribe et al.[1] pre-
ented a virial equation of state (Eos) for the accurate pre-
iction of thermodynamic properties of natural gas systems

n the custody transfer regime, i.e. 270≤T/K ≤ 330 and
/MPa≤ 12. The model presented[1] was a virial EoS trun-
ated at the third virial coefficient with the second,B, and
hird,C, virial coefficients given as quadratic functions of 1/T
nd the mixture virial coefficients were obtained from inter-
ction virial coefficients through formal mixing rules. The
esults obtained were quite satisfactory in comparison with
hose yielded by reference models for natural gas applica-
ions, namely the GERG virial EoS[2] and the AGA8-DC92
odel[3]. The overall average absolute deviation (AAD) in
ensities of natural gases was 0.034% and the AAD in speeds
f sound was 0.17%.

The development of a virial EoS for natural gas systems re-
uires knowledge of large numbers of interaction virial coef-
cients. Thus, for a typical 13-component natural gas system,

virial coefficients are needed for 546 different interactio
However, given the very small mole fractions of some com
nents in those mixtures, GERG estimated[2] that cross viria
coefficients would be needed for about a hundred diffe
interactions. Indeed, the virial EoS of[1] is based on cros
virial coefficients for 106 different interactions compris
second and third virial coefficients for 12 like interactio
second virial coefficients for 24 unlike interactions and t
virial coefficients for 58 unlike interactions.

To reduce the amount of substance- and interac
specific information required, our interest in this work is
develop a generalised virial EoS for application to nat
gas systems under the custody transfer regime, with the
sidiary interest of applying this model to a wider variety
non-polar compounds. Generalised virial equations are b
on the corresponding states principle (CSP) given th
rect connection between the intermolecular potential an
virial coefficients. Thus, it is possible to formulate expr
sions forB andC in terms of the CSP as universal functio
of the reduced temperature. Common examples of such
els are those of Tsonopoulos[4] for the reduced second viri
∗ Corresponding author. Tel.: +57 2 3218390; fax: +57 2 5552180.
E-mail address:jfe@puj.edu.co (J.F. Estela-Uribe).

coefficient and of Orbey and Vera[5] for the reduced third
virial coefficient.
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In our work we shall compare the model we propose with
those of[4,5] with extension to mixtures as recommended
by Prausnitz et al.[6]. We shall show that it is possible to
improve the predictive capability of the model while reducing
the number of adjustable coefficients. On the other hand, our
proposed mixture model improves on the common method of
using mixing rules to obtain the pseudo-reduced properties
of binary interactions in a mixture[6]. We shall argue that
the proposed method leads to a significant improvement on
the calculation of properties of multicomponent mixtures. We
shall also report on deviations in calculatedBandC, densities
and speeds of sound of pure components and binary mixtures.

2. Theory

The virial equation stands as one of the most elegant
yet easy-to-use EoS because of its sound foundation on the
statistical-mechanical theory. Formally, the virial equation is
obtained from a series expansion of either the radial distri-
bution function or the grand canonical partition function for
low-density gases. The virial coefficients are directly associ-
ated with the intermolecular potential energy so thatB is re-
lated to the energy of interaction between pairs of molecules,
C is related to the energy of interaction between triplets of
molecules, and so forth. Also, the mixture virial coefficients
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it is not possible to associate reliable interaction virial co-
efficients. However, as the mole fractions of hydrocarbons
higher than propane are very small, the numerical effect on
Bmix andCmix of interactions containing those components
is negligible. This allows for the reduction in the amount of
significant interactions to around a hundred as already shown
[1,2]. Nevertheless, as in the models of[1,2], eachBij andCijk
depends on temperature through 3-term polynomials, this re-
sults in models that incorporate on the order of 300 adjustable
coefficients. The number of adjustable coefficients would be
nearly the same, or even greater, should the virial coefficients
be calculated by integration of model intermolecular poten-
tials. To reduce the number of coefficients, an alternative is
to use generalised virial coefficients.

From the direct connection between the virial coefficients
and the intermolecular potential, the CSP can be extended
to virial coefficients. For spherically symmetrical molecules,
the intermolecular potentialu is given by

u(r) = εΦ
( r
σ

)
, (4)

wherer is the separation between molecules,ε the energy at
the potential-energy minimum,σ the separation at which the
potential energy is zero, andΦ a function of distance only.
From Eq.(4) it follows that the dimensionless (or reduced)
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re derived directly from theory so that there is no nee
rinciple, to resort to empirical combining rules.

There is no clear theoretical indication for the converge
f the virial EoS. Yet, the results of the models of[1,2] in-
icate that virial equations truncated atC can represent th
ensities of gas mixtures up to one-third of the critical den
s the densities of natural gas systems under custody tra
perations rarely exceed one-third of the critical density
t the lowest temperature and highest pressure, i.e.T= 270 K
ndp= 12 MPa, we shall use a virial EoS truncated aC.
hus, the mixture compression factorZ is given by

= 1 + Bmixρn + Cmixρ
2
n. (1)

ere,ρn is the amount-of-substance density andBmix Cmix
re the mixture second and third virial coefficients given

he relations:

mix =
∑
i

∑
j

xixjBij, (2)

mix =
∑
i

∑
j

∑
k

xixjxkCijk. (3)

n Eqs.(2) and (3), xi , xj andxk are the mole fractions o
he i-th, j-th andk-th components of the mixture;Bij and
ijk are, respectively, the interaction second and third v
oefficients that are functions of temperature only.

In practice, the availability of information aboutBij and
ijk is a limitation for the use of Eqs.(2) and (3). For instance

n the case of a 13-component natural gas mixture, Eq(2)
nd (3)involve 546 different interactions, for many of whi
otential energy is a function only of the dimensionless
ration:

∗(r) = Φ(r∗). (5)

here u* =u/ε is the dimensionless potential energy
* = r/σ is the dimensionless separation. On the other h
he second virial coefficient can be expressed in terms o
ensionless variables as

= −2πNAσ
3
∫ ∞

0

[
exp

(−εΦ(r∗)

kBT

)
− 1

]
r∗2dr∗ (6)

n whichNA is Avogadro’s constant andkB is Boltzmann’s
onstant. By settingε/kB proportional to the critical temper
ureTc, the reduced second virial coefficientB* =B* /2πNAσ

3

s

∗ = ΦB(Tr). (7)

hereΦB is a universal function only of the reduced temp
tureTr =T/Tc.

As the CSP is formally correct only for spheri
olecules, Eq.(7) would not be accurate for fluids that d

iate from spherical symmetry. One of the methods use
mprove the application of the CSP to fluids of non-sphe
eometry is the three-parameter CSP. This method is a p
ation on the CSP with the introduction of a parameter c
cterising the non-symmetrical geometry of the molec
he most common characterising parameter is Pitzer’s a

ric factor[7]. Thus, Eq.(7) could be extended to fluids wi
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non-spherical geometry as

B =
(
RT c

pc

)
[B0(Tr) + (ω − ω0)B1(Tr)], (8)

in whichB0 represents the reduced second virial coefficient of
a simple, i.e. spherical, fluid,B1 accounts for the contribution
due to the non-spherical geometry of the fluid of interest andω

andω0 are, respectively, the acentric factors of the fluid of in-
terest and the reference fluid. The correlations by Tsonopou-
los [4], Orbey[8], Kis and Orbey[9], Schreiber and Pitzer
[10] and Pitzer[11] are examples of Eq.(8) but useω0 = 0.

In the case of the third virial coefficient it is necessary
to account for the pairwise and non-additive contributions
to the intermolecular potential energy. A corresponding
states model would be appropriate only for the pairwise
contribution. However, the non-additive contribution is
important only at low reduced temperatures[6]. Thus, a
correlation for the third virial coefficient would be analogous
to that of Eq.(8) as

C =
(
RT c

pc

)2

[C0(Tr) + (ω − ω0)C1(Tr)]. (9)

The correlations by Chueh and coworkers[12] and Orbey
and Vera [5] are examples of Eq.(9) with ω0 = 0. For
convenience, we reproduce inAppendix A the correlations
o
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B1(Tr) = b1,1 + b1,2
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, (11)

C0(Tr) = c0,1 + c0,2

T 2.5
r

+ c0,3

T 10
r

, (12)

and

C1(Tr) = c1,1 + c1,2

T 8
r

+ c1,3

T 10
r

. (13)

Thus, the model incorporates 12 adjustable coefficients
whereas the Tsonopoulos[4] and Orbey and Vera[5] cor-
relations use 17 adjustable coefficients altogether. We chose
argon as the reference fluid because this is an almost spherical
molecule and calculatedω0 =−0.002202 with the ancillary
vapour pressure equation from Tegeler et al.[15]. The value
of ω0 is very small but it is not null nonetheless. In fact,ω0
need not be zero and this allows for flexibility in the choice of
the reference fluid according to the class of fluids of interest.

The coefficients of Eqs.(10)–(13)were fitted against a
data set comprising 969 compression-factor data and 231
speed of sound data for natural gas components in the in-
tervals 270≤T/K ≤ 330 andp/MPa≤ 12. The compression
factors were taken from the GERG 1990 Databank[16] for
CH4, C2H6, C3H8, N2, CO2, CO, H2 and He. Speeds of
sound were taken from the data by Trusler and Zarari[17] for
C
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f Tsonopoulos[4] and Orbey and Vera[5].
Corresponding states models are formulated for fl

hose configurational properties are described by clas
echanics. For low-molecular weight molecules at low t
eratures, quantum-mechanical effects are significant,

hat corresponding states models do not apply under
onditions. Gunn et al.[12] outlined a technique where
emperature-dependent effective critical constants are
n corresponding states models for the quantum gases H2, He
nd Ne. In our work it is necessary to include those correc
ecause H2 and He are components of natural gas mixtu

The extension to mixtures is possible given the equ
ence between the intermolecular potential parameter an
ritical constants in the CSP, so that combining rules fo
ntermolecular potential parameters are extended, by
gy, to combining rules for pseudo-critical constants. T

o calculateBij one can replaceTc, pc andω in Eq. (8) with
c
ij, p

c
ij andωij , respectively, and useTr,ij = T/T c

ij. Lee and
esler[13] proposed combining rules for the pseudo-crit
roperties, which are reproduced inAppendix A, where we
lso present the approximation proposed by Orentliche
rausnitz[14] for the interaction third virial coefficientCijk .

. Proposed model

The model we propose is based on Eqs.(8) and (9)with
he functionsB0, B1, C0 andC1 given by

0(Tr) = b0,1 + b0,2

T 1.5
r

+ b0,3

T 2
r
, (10)
H4; Estrada-Alexanders and Trusler[18] for C2H6; Trusler
nd Zarari[19] for C3H8; Boyes[20], Ewing and Trusle

21] and Costa-Gomes and Trusler[22] for N2 and Estrada
lexanders and Trusler[23] for CO2. In Table 1we give the
ptimised coefficients.

For the extension to mixtures we propose a one-fluid
ure model instead of the method outlined inAppendix A. We
rgue that the drawback of the method of Eqs.(A.10)–(A.18)

s the approximation toCijk of Eq. (A.18). For binary mix-
ures the effect of the approximation might be small, ye
ulticomponent systems the cumulative effect may bec

ignificant. On the other hand, the correlation of Eq.(A.13)
s formally unsatisfactory because in the pure-compo
imit it does not converge to the critical compression fa
iven by the relationshipZc

i = pc
i /(ρc

i RT
c
i ). In the method

e propose, the mixture is characterised by pseudo-cr
onstants, the mixing of critical properties is carried out o
nd the mixture virial coefficients are calculated with E
8) and (9)as if the mixture were a single component.
ake the expressions proposed by Clarke[24] for the mixture

able 1
oefficients of functionsB0, B1, C0 andC1 of Models 1 and 2

oefficient Value Coefficient Value

0,1 0.11993755 c0,1 0.00856591

0,2 −0.57931684 c0,2 0.03621018

0,3 0.12468363 c0,3 −0.00791697

1,1 0.06783874 c1,1 −0.02124512

1,2 0.98723789 c1,2 0.05884014

1,3 −1.09259643 c1,3 −0.02040829
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critical densityρc
x and critical temperatureT c

x :

ρc
x =


∑

i

∑
j

xixj

ρc
ij




−1

, (14)

and

T c
x = ρc

x

∑
i

∑
j

xixjT
c
ij

ρc
ij

. (15)

In Eqs.(14) and (15)the subscript “x” indicates mixture prop-
erties. For the interaction critical densityρc

ij we propose the
following modified form of Eq.(A.11):

ρc
ij = 8(1+ dij)

−3


( 1

ρc
i

)1/3

+
(

1

ρc
j

)1/3



−3

. (16)

wheredij is a binary interaction parameter. ForT c
ij in Eq.(15)

we use Eq.(A.10), in which eachT c
i is given by Eq.(A.7) if

any of the components of the interaction is H2 or He. For the
interaction parameterkij of Eq.(A.10)we use the expression
proposed by Walas[25]:

kij = 1 −
aijρ

c
ij

(ρc
i ρ

c
j)

1/2
(17)
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To ensure thorough analysis of the results given by the
proposed functionalities for the generalised virial coefficients
and the mixture model, we shall compare the following four
models. Model 1 is the basic proposal of this work, i.e. the
generalised virial coefficients of Eqs.(8)–(13)and the one-
fluid mixture model of Eqs.(14)–(20). Model 2 is based on
Eqs.(8)–(13)with the mixture model of Eqs.(A.10)–(A.18);
however, Eq.(A.13) is changed to:

Zc
ij = 1

2(Zc
i + Zc

j), (21)

to ensure consistency in the pure-component limit. Model 3
is based on the Tsonopoulos[4] and Orbey and Vera correla-
tions[5], i.e. Eqs.(A.1)–(A.6), and the mixture model of Eqs.
(14)–(20). Finally, Model 4 is based on Eqs.(A.1)–(A.6)and
the mixture model of Eqs.(A.10)–(A.18)but with Eq.(21)
replacing Eq.(A.13). Thus, the effect of the virial coefficient
model is analysed from the comparison of Model 1–3 and
Model 2–4, whereas the effect of the mixture model is anal-
ysed from the comparison of Model 1–2 and Model 3–4. In
the four modelsρc

ij andkij are given by Eqs.(16)and(17). To
fit the binary interaction parametersdij andaij of Eqs.(16)
and(17) we used only the binary-mixture compression fac-
tor data reported in the GERG 1990 Databank[16] because
these state-of-the-art measurements have been critically as-
sessed with regards to experimental technique and internal
c
T 9
u hich
t es
n ave
t

4

4

com-
p ts, bi-
n eport
d nts
o fac-
t with
t f
s the
r

u

I or
t by
n which we have introduced the binary interaction param
ij . The pseudo-critical pressure of the mixturepc

x is obtained
rom

c
x = Zc

xρ
c
xRT

c
x (18)

or the mixture critical compression factorZc
x we use the

ole-weighted average:

c
x =

∑
i

xiZ
c
i (19)

n which the individual component critical compression f
ors are obtained fromZc

i = pc
i /(ρc

i RT
c
i ), where the correc

ions of Eqs.(A.7)–(A.9)are used for quantum componen
or the mixture acentric factor we use the number avera

x =
∑
i

xiωi. (20)

hus, in the proposed method,Tc, pc andω of Eqs.(8) and
9) are replaced withT c

x , pc
x andωx, respectively, andTr is

iven byTr = T/T c
x . In addition, there is no need to use E

2) and(3) and the approximation toCijk of Eq. (A.18) be-
ause the virial coefficients of Eqs.(8) and(9) can be use
irectly in Eq.(1) for the mixture compression factor. Th
owever, is an approximation to the formal mixture virial
fficients of Eqs.(2) and(3) because the composition dep
ence of the proposed one-fluid model is different from
imple quadratic and cubic functionalities of the formal m
ure virial coefficients. Finally, Eqs.(14)–(20)reduce natu
ally to single-component expressions in the pure-compo
imit.
onsistency and are claimed to be accurate within±0.1%. In
able 2we present the values ofdij andaij optimised for the 1
nlike interactions that correspond to the mixtures for w

here are data in[16]. For like interactions, and for mixtur
ot listed inTable 2, the binary interaction parameters h

he default valuesdij = 1 andaij = 0.

. Results and discussion

.1. Results

The results we present are deviations in calculated
ression factors and speeds of sound of pure componen
ary mixtures and natural gas systems. In addition, we r
eviations in calculated second and third virial coefficie
f pure components and binary mixtures. Compression

ors for both pure fluids and mixtures were calculated
he proposed four models as outlined in Section3. Speeds o
ound in the thermodynamic limit were calculated with
elation:

2 =
(
RT

M

)Z + ρn

(
∂Z

∂ρn

)
T

+ R

CV

(
Z + T

(
∂Z

∂T

)
ρn

)2

 . (22)

n Eq. (21) M is the mole weight of the component,
he mixture, andCV is the isochoric heat capacity given
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Table 2
Binary interaction parametersdij andaij of Models 1–4

Interaction Model 1 Model 2

dij aij dij aij

CH4 C2H6 1.023000 0.002524 1.008085 0.003361
CH4 C3H8 1.108130 0.045592 0.997028 0.001572
CH4 i-C4H10 1.178450 0.064475 1.071740 0.035076
CH4 n-C4H10 1.064020 0.021620 0.966976 −0.010767
CH4 n-C5H12 1.064110 0.001510 0.982959 −0.013338
CH4 n-C6H14 1.353330 0.116272 1.348887 0.120782
CH4 N2 1.037100 0.022402 1.025344 0.021365
CH4 CO2 0.945619 −0.017417 0.977654 0.016505
CH4 CO 1.094280 0.034345 0.978114 −0.003841
CH4 H2 1.077400 0.000578 0.941270 −0.021147
C2H6 H2 1.100260 −0.016260 0.909185 −0.029291
N2 C2H6 1.008970 −0.002350 0.990525 0.018254
N2 C3H8 1.255540 0.123985 1.119823 0.081907
N2 n-C4H10 1.594740 0.271224 1.416704 0.209650
N2 CO2 1.103340 0.011300 1.093940 0.039339
N2 CO 1.660890 0.205654 1.588611 0.187300
N2 H2 1.038660 0.016725 0.997903 0.006113
CO2 C2H6 0.918546 −0.000233 0.914012 −0.002415
CO2 H2 1.274400 −0.015689 1.008490 −0.015459

Model 3 Model 4

CH4 C2H6 1.045560 0.020230 1.011163 0.009477
CH4 C3H8 1.061350 0.025907 0.977225 −0.006413
CH4 i-C4H10 1.163460 0.063835 1.073109 0.040598
CH4 n-C4H10 0.873445 −0.090245 0.783299 −0.108329
CH4 n-C5H12 0.823402 −0.050224 0.821792 −0.032702
CH4 n-C6H14 0.533503 −0.254636 0.925981 0.046424
CH4 N2 0.969196 −0.001213 0.948983 −0.005744
CH4 CO2 0.953184 −0.009268 0.973536 0.017292
CH4 CO 0.808028 −0.059617 0.773634 −0.071862
CH4 H2 0.995171 −0.020076 0.856162 −0.050322
C2H6 H2 1.014940 −0.041472 0.868729 −0.051502
N2 C2H6 1.051790 0.018719 0.982952 0.018279
N2 C3H8 1.056030 0.044053 0.898457 −0.012433
N2 n-C4H10 0.966362 0.033034 0.876466 0.001142
N2 CO2 1.045270 −0.010767 1.002676 0.003146
N2 CO 0.853647 0.001041 0.857115 0.002619
N2 H2 0.890320 −0.017817 0.795587 −0.045321
CO2 C2H6 0.927895 0.008793 0.922916 0.007118
CO2 H2 1.278000 −0.012118 0.911990 −0.050324

CV = C
pg
V + Cres

V , in which the perfect-gas contributionCpg
V

is obtained with the generalised correlation by Jaeschke and
Schley[26] and the residual contributionCres

V is given by

(
Cres

V

R

)
= −

[
2T

(
dB

dT

)
+ T 2

(
d2B

dT 2

)]
ρn

−
[
T

(
dC

dT

)
+ T 2

2

(
d2C

dT 2

)]
ρ2
n. (23)

Estela-Uribe et al.[1] showed that the calculation of speeds
of sound with a virial EoS is significantly improved when the
temperature dependence of the virial coefficients is such that
the first and second temperature derivatives ofB andC are
functions of temperature. Clearly, the functionalities in 1/T
of Eqs.(10)–(13)satisfy this condition.

Table 3
Summary of percentage average absolute deviations in calculated compres-
sion factors and speeds of sound of pure fluids

Fluid References Number of
points

Models 1
and 2

Models 3
and 4

Z
CH4 [16] 821 0.032 0.052
C2H6 [16] 189 0.040 0.236
C3H8 [16] 26 0.038 0.131
N2 [16] 512 0.058 0.096
CO2 [16] 418 0.029 0.104
CO [16] 15 0.076 0.037
H2 [16] 130 0.032 0.192
He [16] 127 0.051 0.470

Overall 2238 0.040 0.120

u
CH4 [17] 48 0.179 0.142
C2H6 [18] 88 0.081 0.524
C3H8 [19] 30 0.041 0.090
N2 [20–22] 121 0.054 0.034
CO2 [23] 20 0.058 0.198

Overall 307 0.080 0.207

In Tables 3–5we present deviations in compression fac-
tors and speeds of sound calculated with the four models
together with the sources of experimental data. The statistic
we used was the percentage AAD. The results ofTable 3
are for pure components; those ofTable 4are for binary
mixtures and those ofTable 5are for natural gas systems.
In Table 3, the results of Models 1 and 2 are the same, as
well as those of Models 3 and 4, because the mixture models
of Eqs. (14)–(20)and (A.10)–(A.18) reduce to the single-
component critical properties. For the results ofTable 5, ex-
perimental compression factors were taken from[16] for the
samples denominated Groups 1–6 and from[32,33] for the
samples denominated GU1, GU2, RG2, NIST1 and NIST2.
Gases of Groups 1–6 comprise 84 different gas samples.
Those groups were classified by GERG[2] such that Group
1 gases havexN2 > 0.095 andxH2 = 0; Group 2 gases have
xCO2 > 0.04; gases of Group 3 havexC2H6 > 0.08; gases of
Group 4 havexH2 > 0.02; Group 5 gases havexN2 > 0.04
and xC2H6 > 0.04; and Group 6 gases havexCH4 > 0.94.
The compositions reported in[32,33] indicate that sam-
ples GU1, GU2, RG2 and NIST1 correspond to gases of
Groups 1–3 and 6, respectively. Sample NIST 2 is simi-
lar to Group 5 gases. The gas samples of[27] are named
according to geographical origin, and the sample denomi-
nated Synthetic is a five-component synthetic mixture[29].
In Table 6we summarise the results of the four models re-
g l gas
m

In
F om-
p CH
N e-
v , re-
arding pure components, binary mixtures and natura
ixtures.
In Figs. 1–7we present results only for Model 1.

igs. 1 and 2we present percentage deviations in c
ression factors and speeds of sound, respectively, for4,
2 and CO2. In Figs. 3 and 4we present percentage d
iations in compression factors and speeds of sound
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Table 4
Summary of percentage average absolute deviations in calculated compression factors and speeds of sound of binary mixtures

System References No. of points Model 1 Model 2 Model 3 Model 4

Z
(CH4+C2H6) [16] 794 0.045 0.038 0.046 0.056
(CH4+C3H8) [16] 217 0.021 0.069 0.028 0.042
(CH4+i-C4H10) [16] 27 0.016 0.045 0.018 0.044
(CH4+n-C4H10) [16] 192 0.042 0.052 0.038 0.051
(CH4+n-C5H12) [16] 21 0.021 0.023 0.015 0.016
(CH4+n-C6H14) [16] 119 0.035 0.034 0.036 0.037
(CH4+N2) [16] 933 0.068 0.064 0.037 0.035
(CH4+CO2) [16] 357 0.100 0.100 0.100 0.115
(CH4+CO) [16] 132 0.044 0.043 0.040 0.039
(CH4+H2) [16] 404 0.038 0.023 0.040 0.047
(C2H6+H2) [16] 156 0.059 0.026 0.047 0.024
(N2+C2H6) [16] 298 0.268 0.086 0.246 0.077
(N2+C3H8) [16] 153 0.055 0.069 0.029 0.026
(N2+n-C4H10) [16] 113 0.058 0.060 0.013 0.015
(N2+CO2) [16] 247 0.079 0.061 0.086 0.039
(N2+CO) [16] 130 0.071 0.070 0.014 0.014
(N2+H2) [16] 456 0.060 0.038 0.073 0.065
(CO2+C2H6) [16] 499 0.047 0.039 0.068 0.056
(CO2+H2) [16] 213 0.121 0.022 0.131 0.037

Overall 5461 0.070 0.052 0.064 0.051

u
(CH4+C2H6) [27,28,29] 340 0.198 0.998 0.358 0.375
(CH4+C3H8) [27,30] 60 0.218 0.382 0.173 0.285
(CH4+N2) [27,31] 243 0.220 0.213 0.147 0.136
(CH4+CO2) [27,31] 162 0.133 0.192 0.083 0.186
(N2+CO2) [27] 39 0.186 0.269 0.198 0.206

Overall 844 0.193 0.540 0.224 0.255

spectively, for the systems (CH4 + C2H6), (CH4 + N2H6)
and (CH4 + CO2). In Figs. 5 and 6we present percent-
age deviations in compression factors of natural gases and
speeds of sound of natural gases, respectively, and the

frequency distributions of those deviations are presented
in Fig. 7.

In Table 7we present average deviations in second and
third virial coefficients of pure fluids calculated with the

Table 5
Summary of percentage average absolute deviations in calculated compression factors and speeds of sound of natural gas systems

System References No. of points Model 1 Model 2 Model 3 Model 4

Z
Group 1 [16] 713 0.052 0.060 0.045 0.050
Group 2 [16] 477 0.064 0.050 0.097 0.056
Group 3 [16] 1403 0.055 0.282 0.129 0.164
Group 4 [16] 690 0.041 0.056 0.061 0.051
Group 5 [16] 660 0.039 0.082 0.065 0.064
Group 6 [16] 530 0.028 0.029 0.034 0.033
GU1 [32,33] 84 0.040 0.044 0.035 0.034
GU2 [32,33] 87 0.071 0.066 0.066 0.061
RG2 [32,33] 87 0.031 0.121 0.037 0.088
NIST1 [32,33] 84 0.029 0.033 0.026 0.028
NIST2 [32,33] 85 0.032 0.046 0.034 0.039

Overall 4900 0.047 0.122 0.078 0.084

u
Gulf Coast [27] 48 0.136 0.172 0.158 0.195
Amarillo [27] 48 0.139 0.188 0.159 0.190
Statoil Dry [27] 58 0.093 0.199 0.157 0.168
Statvordgass [27] 27 0.160 0.229 0.133 0.227
Synthetic [29] 10 0.148 0.272 0.133 0.195

0
Overall 191
 .128 0.196 0.153 0.190
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Table 6
Summary of overall percentage average absolute deviations in calculated
compression factors and speeds of sound of pure fluids, binary mixtures and
natural gas systems

Property No. of
points

Model
1

Model
2

Model
3

Model
4

Z
Pure fluids 2238 0.040 0.040 0.120 0.120
Binary mixtures 5461 0.070 0.052 0.064 0.051
Natural gas systems 4900 0.047 0.122 0.078 0.084

Overall 12599 0.056 0.077 0.079 0.076

u
Pure fluids 307 0.080 0.080 0.207 0.207
Binary mixtures 844 0.193 0.540 0.224 0.255
Natural gas systems 191 0.128 0.196 0.153 0.190

Overall 1342 0.158 0.386 0.210 0.235

four models. Those deviations were calculated as�B =
1
n

n∑
i=1

∣∣Bexp,i − Bcalc,i
∣∣ and�C = 1

n

n∑
i=1

∣∣Cexp,i − Ccalc,i
∣∣. In

Fig. 8 we present deviations between second virial coeffi-
cients calculated with Model 1 and the data of Gilgen et al.
[35] for Ar, Kleinrahm et al.[38] and Ḧandel et al.[39] for
CH4 and Nowak et al.[36] for N2. In Fig. 9 we present ex-
perimental third virial coefficients for Ar[34], CH4 [38,39]
and N2 [36] together with the corresponding third virial co-
efficients calculated with Model 1.

In Table 8we present average deviations�B and�C in
mixture virial coefficients calculated with Models 2 and 4. As
we indicated in Section3, the one-fluid mixture model does
not allow the calculation of formal mixture virial coefficients;
therefore, we do not include comparisons of results calculated

F
a
2
3

Fig. 2. Relative deviations�u/ubetween experimental speeds of sound and
values calculated with the proposed model for pure fluids. For CH4 with data
from [17]: (+) 275 K; (�) 300 K; (©) 325 K. For N2 with data from[22]:
(�) 275 K; (♦) 300 K. For CO2 with data from[23]: (�) 275 K; (�) 300 K.

Fig. 3. Relative deviations�Z/Z between experimental densities from
[16] and values calculated with the proposed model for binary systems.
For (0.91935CH4 + 0.08065C2H6): (+) 270 K; (�) 290 K; (©) 330 K.
For (0.80021CH4 + 0.19976N2): (�) 270 K; (♦) 290 K; (�) 330 K. For
(0.6855CH4 + 0.3145CO2): (�) 270 K; (�) 310 K; (�) 330 K.

with Models 1 and 3. On the contrary, as the mixture model
of Eqs.(A.10)–(A.18)produce individual interaction virial
coefficients, we only report results calculated with Models
2 and 4. Deviations were calculated with respect to the data
by Hou et al.[47] and McElroy and Fang[48] for the sys-
tem (CH4 + C2H6); Hou et al.[47], Brugge et al.[49] and
Esper et al.[50] for the system (CH4 + CO2); Achtermann et
al. [51] for the system (N2 + C2H6); Brugge et al.[49] and
ig. 1. Relative deviations�Z/Z between experimental densities from[16]
nd values calculated with the proposed model for pure fluids. For CH4: (+)
73.15 K; (�) 293.15 K; (©) 323.15 K. For N2: (�) 273 K; (♦) 293 K; (�)
23 K. For CO2: (�) 273 K; (�) 300 K; (�) 320 K.
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Fig. 4. Relative deviations�u/u between experimental speeds of sound
from [27] and values calculated with the proposed model for binary sys-
tems. For (0.94985CH4 + 0.05015C2H6): (+) 275 K; (�) 300 K; (©) 325 K.
For (0.95114CH4 + 0.04886N2): (�) 275 K; (♦) 300 K; (�) 325 K. For
(0.94979CH4 + 0.05021CO2): (�) 275 K; (�) 300 K; (�) 325 K.

Fig. 5. Relative deviations�Z/Zbetween experimental compression factors
of natural gases from[16] and values calculated with the proposed model.
(�) sample N60 at 270 K; (�) sample N60 at 330 K; (©) sample N64 at
270 K; (�) sample N64 at 330 K; (�) sample N66 at 270 K; (�) sample N66
at 330 K; (+) sample N74 at 270 K;sample N74 at 330 K; (♦) sample N83
at 270 K; (�) sample N83 at 330 K; (�) sample N62 at 270 K; (�) sample
N62 at 330 K.

Esper et al.[50] for the system (N2 + CO2) and Hou et al.
[47], Brugge et al.[49], McElroy et al.[52] and Weber[53]
for the system (CO2 + C2H6). In Table 9we present aver-
age deviations�B12, �C112 and�C122 in interaction virial

Fig. 6. Relative deviations�u/u between experimental speeds of sound of
natural gases and values calculated with the proposed model. (�) sample
Gulf Coast[27] at 275 K; (�) sample Gulf Coast[27] at 325 K; (©) sample
Amarillo [27] at 275 K; (�) sample Amarillo[27] at 325 K; (�) sample
Statoil Dry[27] at 275 K; (�) sample Statoil Dry[27] at 325 K; (+) sample
Statvordgass[27] at 300 K; sample Statvordgass[27] at 325 K; (♦) sample
synthetic[29] at 275 K; (�) sample synthetic[29] at 300 K.

coefficients calculated with Models 2 and 4 with respect to
data from references[47,49–52]. In Fig. 10we present devi-
ations between calculated and experimental interaction sec-
ond virial coefficients of Hou et al.[47] for (CH4 + C2H6)
and (CH4 + CO2), of Esper et al.[50] for (CH4 + CO2) and

F tural
g del.
ig. 7. Frequency distribution of deviations in compression factors of na
as systems from[16,32,33]and values calculated with the proposed mo
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Fig. 8. Deviations between calculated and experimental second virial coef-
ficients. (�) for Ar with data from[35]. (�) for CH4 with data from[38,39].
(�) for N2 with data from[36].

Table 7
Average absolute deviations�B and�C in calculated second and third virial coefficients of pure components

Fluid References No. of points Temperature interval (K) �B/cm3 mol−1 Models 1 and 2 �B/cm3 mol−1 model of[4]

H2 [34] 11 22–400 5.89 4.46
He [34] 11 5–700 3.04 3.41
Ne [34] 10 60–600 1.05 1.12
Ar [35] 27 110–340 0.88 1.95
Kr [34] 14 110–700 15.63 2.71
Xe [34] 16 160–650 11.85 3.14
N2 [36] 29 98–340 0.96 1.50
CO [34] 12 213–475 2.46 1.81
CO2 [37] 7 220–340 0.38 1.51
CH4 [38,39] 18 160–323 0.53 0.76
C2H6 [40,41] 30 273–623 0.43 6.11
C2H4 [34] 9 240–450 0.38 1.19
C3H8 [42] 23 323–623 0.73 2.55
i-C4H10 [43] 8 251–320 3.53 32.20
n-C4H10 [44] 8 250–320 12.68 32.07
i-C5H12 [45] 7 260–320 4.47 83.87
n-C5H12 [46] 7 270–330 17.69 59.67
neo-C5H12 [34] 10 300–550 10.35 3.13
n-C6H14 [34] 9 300–450 43.25 21.32
C6H6 [34] 13 290–600 30.00 64.21
C6H12 [34] 13 300–560 31.19 64.56

Overall 292 7.59 13.64

�C/cm3 mol−1 Models 1 and 2 �C/cm3 mol−1 model of[5]

Ar [35] 25 130–340 147 76
N2 [36] 29 98–340 388 110
CO2 [37] 4 280–340 130 116
CH4 [38,39] 17 180–323 131 25
C2H6 [40,41] 30 273–623 466 401
C3H8 [42] 17 343–623 843 617

Overall 108 436 272

Fig. 9. Experimental and calculated third virial coefficients. (�) data for Ar
from [35]. (�) data for CH4 from [38,39]. (�) data for N2 with data from
[36]. (—) Values calculated with the proposed model.
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Table 8
Absolute average deviations in second and third mixture virial coefficients calculated with the proposed models

System Sources No. points Temperature range (K) Composition rangea �B/cm3 mol−1

Model 2 Model 4

CH4 + C2H6 [47,48] 19 300–343 0.3–0.7 0.80 0.78
CH4 + CO2 [47,49,50] 26 230–320 0.1–0.9 0.55 0.34
N2 + C2H6 [51] 15 270–350 0.2–0.8 0.86 0.46
N2 + CO2 [49,50] 20 230–320 0.1–0.9 0.69 0.27
CO2 + C2H6 [47,49,52,53] 35 300–333 0.1–0.9 1.42 1.48

Overall 115 230–350 0.1–0.9 0.92 0.76

�C/cm6 mol−2

Model 2 Model 4

CH4 + C2H6 [47,48] 19 300–343 0.3–0.7 180 183
CH4 + CO2 [47,49,50] 24 230–320 0.1–0.9 62 73
N2 + C2H6 [51] 15 270–350 0.2–0.8 212 114
N2 + CO2 [49,50] 20 230–320 0.1–0.9 229 100
CO2 + C2H6 [47,49,52,53] 35 300–333 0.1–0.9 163 171

Overall 113 230–350 0.1–0.9 163 132
a Mole fraction of the first component of the mixture.

(N2 + CO2), of Achtermann et al.[51] for (N2 + C2H6) and
of McElroy et al.[52] for (CO2 + C2H6).

To illustrate the difference between the mixture virial coef-
ficients calculated with Model 2, i.e. the new virial-coefficient
correlation and formal mixing rules, and the approximate val-
ues given by the one-fluid mixture model (Model 1), we show
in Fig. 11deviations calculated with both models for the data
of Hou et al.[47] for (CH4 + CO2) and (CO2 + C2H6) and
Brugge et al.[49] for (N2 + CO2) at the selected isotherm of
T= 300 K for the whole range of compositions.

4.2. Discussion

From Table 6, the comparison of Models 1–3 is quite
favourable in almost all respects. The largest proportional de-

Table 9
Absolute average deviations in second and third interaction virial coefficients calculated with the proposed models

System Sources No. points Temperature range (K) �B12/cm3 mol−1

Model 2 Model 4

CH4 + C2H6 [47] 2 300–320 0.84 0.19
CH4 + CO2 [47,49,50] 14 230–320 1.12 0.83
N2 + C2H6 [51] 5 270–350 1.57 1.16
N2 + CO2 [49,50] 13 230–320 1.81 1.05
CO2 + C2H6 [47,49,52] 8 300–333 1.14 1.84

Overall 40 230–350 1.38 1.10

C
C
N
N
C

O

crease in AADs was for pure-fluid properties. Also, there was
a large relative decrease for the overall AADs in natural-gas
compression factors. Smaller relative reductions occurred for
binary-mixture and natural-gas speeds of sound. By contrast,
there was a slight increase in the overall AAD of binary-
mixture compression factors.

The calculation of pure-fluid properties with Models 2 and
4 yields exactly the same AADs as that with Models 1 and 3,
respectively, because the mixture models reduce formally to
single-component expressions in the pure-component limit.
On the other hand, the overall comparison of Models 2–4 is
much less favourable. Firstly, there was a marginal increase
in the overall AAD for binary-mixture compression factors.
However, there occurred an important increase in the over-
all AAD for natural-gasZ’s. From Table 5we see that the
H4 + C2H6 [47] 2 300–320
H4 + CO2 [47,49] 4 300–320

2 + C2H6 [51] 5 270–350

2 + CO2 [49] 2 300–320
O2 + C2H6 [47,49,52] 8 300–333

verall 19 270–350
�C112/cm6 mol−2 �C122/cm6 mol−2

Model 2 Model 4 Model 2 Model 4

106 145 137 171
86 33 21 78

602 296 177 471
196 123 153 24
514 466 512 560

384 280 269 359



94 J.F. Estela-Uribe, J. Jaramillo / Fluid Phase Equilibria 231 (2005) 84–98

Fig. 10. Deviations between calculated and experimental interaction sec-
ond virial coefficients. (�) for (CH4 + C2H6) with data from[47]. (�) for
(CH4 + CO2) with data from[47]. (�) for (CH4 + CO2) with data from[50].
(©) for (N2 + C2H6) with data from[51]. (�) for (N2 + CO2) with data from
[50]. (�) for (CO2 + C2H6) with data from[52].

AADs with both models are similar for all gas groups ex-
cept for Group 3. For both models there are large deviations
for the Group 3 samples N1, N10, N14, N16, N18, N20,
N37, N51, N53, N54, N55, N56, N65, N66, N75 and N76
at 270≤T/K ≤ 285 and 6≤p/MPa≤ 12, with average devi-
ations reaching around 1.5% with Model 2 and around 1%
with Model 4. The maximum deviations reached 5.4% with
Model 2 and 3.9% with Model 4, in both cases atT= 270 K
andp= 11.9994 MPa. Thus, the behaviour is analogous for
both models regarding Group 3 gases but the effect is more
pronounced with Model 2. Also, for sample RG2[32,33]the
maximum deviation occurs atT= 275 K andp= 10.36 MPa,
being 1.48% with Model 2 and 1.05% with Model 4.

Regarding overall AADs in speeds of sound, the com-
parison of Models 2–4 is not favourable. There is a small
relative increase in the overall AAD for natural gas sys-
tems, but there was a very significant relative increase for
binary mixtures. There is an AAD of 1.0% with Model 2 for
the system (CH4 + C2H6) whereas it is 0.38% with Model
4. The largest deviations for both models occurred for the
system (0.50217CH4 + 0.49783C2H6) [27] on the isotherm
T= 275 K at 6.5≤p/MPa≤ 11, with deviations for Model
2 exceeding 10% and reaching a maximum of 28.8% at
p= 8.345 MPa, whereas for Model 4 deviations were in ex-
cess of 2% for the same pressure interval with a maximum
of 9.9% atp= 8.087 MPa. Also, fromTable 4we see that the
A oth
m

ble
f AD
f e-
c -
m erall
A ner,
t –4 is
a

Fig. 11. Deviations between calculated and experimental mixture second
virial coefficients atT= 300 K. Full markers are for results calculated with
Model 2 (formal mixing rules) whereas open markers are for results cal-
culated with the one-fluid mixture model (Model 1). (�) and (�) for
(CH4 + CO2) with data from[47]. (�) and (©) for (N2 + CO2) with data
from [49]. (�) and (�) for (CO2 + C2H6) with data from[47].

To summarise, we claim that out of the four models com-
pared, Model 1 offers the best overall performance for the
studied properties and systems. Apart from the AADs in
binary-mixtureZ’s, deviations with Model 1 are the smallest
in all the remaining categories given inTable 6. The proposed
generalised virial-coefficient model of Eqs.(8)–(13), includ-
ing the choice of reference fluid with the correct value of
ω0, is fundamental for the whole performance of the model,
though that is mostly demonstrated by the very significant im-
provement in the prediction of pure-fluid properties shown in
Tables 3 and 6. On the other hand, the use of the one-fluid
mixture model resulted as well in a very important improve-
ment in the prediction of natural-gas properties due to a better
approximation to the mixture third virial coefficient. Clearly,
Eq. (A.18) is based on pairwise additivity and this approx-
imation is much less accurate for multicomponent mixtures
than for binary systems. On the other hand, there is no par-
ticular gain from the use of the proposed virial-coefficient
model with the mixture model of Eqs.(A.10)–(A.18). Also,
the use of the Tsonopoulos[4] and Orbey and Vera[5] virial-
coefficient models with the one-fluid mixture model is not
interesting either given the large deviations in pure-fluid prop-
erties.

At this point it is important to highlight that the proposed
virial model was fitted directly to primary experimentalZ-
andu-data of natural gas components, whereas the models of
[
n pre-
d thod
u indi-
ADs in u’s for the other systems are more similar for b
odels yet smaller for Model 4.
The comparison of Models 1–2 is also quite favoura

or the former. There is a small increase in the overall A
or binary-mixtureZ’s. There is a very significant relative d
rease in the overall AAD for natural-gasZ’s and for binary
ixtureu’s and an important relative decrease in the ov
AD of natural-gas speeds of sound. In a similar man

hough to a lesser extent, the comparison of Models 3
lso favourable.
4,5] were fitted mainly to derived quantities (B andC) for
oble gases. We claim that, given the main objective of
icting primary properties of natural gas systems, the me
sed in this work is more systematic. Moreover, as we
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cated at the end of Section3, the state-of-the-artZ-data from
[16] are accurate within±0.10%; therefore, fitting the model
to these data enhances its predictive capability.

Although the amount of results presented inFigs. 1–6is
limited, they offer a view of the behaviour of Model 1. In
Figs. 1 and 2it is clear that the deviations tend to increase their
range with the increase in the acentric factor of the fluid of
interest, formω = 0.011406 for CH4 toω = 0.22491 for CO2.
This appears to be typical corresponding-states behaviour.
The same is seen inFigs. 3 and 4, in which the range of
deviations increases with the difference in the acentric factors
of the mixture components.Fig. 7shows that the frequency
distribution of AADs in compression factors is only slightly
biased whereas the opposite occurs for the AADs in speeds
of sound.

The results ofTable 7for deviations in pure-component
virial coefficients seem to confirm the conclusions presented
above. The overall deviations in pure-fluid second virial co-
efficients given inTable 7for the proposed model are signif-
icantly smaller than those obtained with the Tsonopoulos[4]
correlation. This is satisfactory given that the calculation was
extended to fluids not included in the fitting of Eqs.(10)–(13)
and extrapolated quite outside the custody transfer tempera-
ture interval. Moreover, the proposed virial model was fitted
to Z- andu-data and not to second virial coefficient data as
it was the model of[4]. Also, the overall deviation for third
v
c the
n the
s

ed
B del
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Finally, we compare the results of Model 1 to those of
the virial EoS by Estela-Uribe et al.[1] and of the GERG
virial EoS[2]. From[1], for the same fluids ofTable 3, the
overall AADs with the model of[1] were 0.017 and 0.15%
for Z’s andu’s, respectively, while those with the model of
[2] were 0.030 and 0.61%, respectively. For the same binary
mixtures ofTable 4, the overall AADs with the model of[1]
were 0.018 and 0.25%, respectively forZ’s andu’s, whereas
with the model of[2] the results were 0.027 and 1.01%, re-
spectively. For natural gas systems, the overall AAD with
the model of[1] for Groups 1–6 was 0.034 and foru’s the
overall AAD was 0.17% for the same samples ofTable 5;
with the model of[2] the corresponding results were 0.039
and 0.81%, respectively. As expected, the results of Model 1
are not as good as those of[1,2] with regards to compression
factors because a generalised model cannot match the per-
formance of substance-specific models. However, the AADs
with Model 1 for pure fluids and natural gas mixtures are not
significantly larger than those of the model of[2] or even the
model of[1]. On the other hand, it is very satisfactory that
the overall AADs in speeds of sound with Model 1 are signif-
icantly smaller than those with the model of[1] for the three
categories of systems studied. This is a consequence of the
number of adjustable coefficients involved in the temperature
derivatives ofB andC. In Model 1 those derivatives involve
eight adjustable coefficients while only four coefficients are
i
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irial coefficients is higher than with the Orbey and Vera[5]
orrelation. We argue that this is due to the reduction in
umber of adjustable coefficients from eight to six and
trong extrapolation in temperature.

The results ofTable 8show that deviations in calculat
mix andCmix are slightly higher with the proposed mo

han those with the correlations of[4,5]. This, again, might b
ue to the smaller number of adjustable coefficients in the
osed model. However, the extent of the deviations is in g
greement with the ordinary uncertainties of±1.5 cm3 mol−1

n estimatedBmix and±300 cm3·mol−2 in estimatedCmix.
he results ofTable 9also show slightly higher deviatio

n calculated�B12 and�C112 with the proposed model tha
hose with the correlations of[4,5] whereas the inverse sit
tion occurs in the case of�C122. Again, the extent of thes
eviations is in good agreement with the expected unce

ies in the estimation of interaction virial coefficients.
Fig. 8 shows that deviations in calculated second v

oefficients are, on average, larger than the error bars. T
xpected from not fitting Eqs.(10)–(13)to virial-coefficient
ata.Fig. 9shows that, apart from lower temperatures, the
rage agreement between experimental and calculated
irial coefficients is relatively good.

The results ofFig. 11illustrate that the mixture virial coe
cients calculated with the one-fluid mixture model of Mo
are not superior to those yielded by the formal mixing r
f Model 2. This is expected because the mixture mod
odel 2 follows the formal composition dependence of E

2) and(3) whereas the one-fluid mixture model yields
roximate mixture virial coefficients.
nvolved in the model of[1]. In the model of[2] only two
oefficients are involved in the first temperature derivat
nd none in the second temperature derivatives.

. Conclusions

The results we have presented are quite satisfactory w
he objectives set up for this work. The proposed mo
odel 1, achieved the objective of reducing the numbe
djustable coefficients (from 17 for the models of[4,5] to
2) while improving on the overall predictive capability
ure-fluid and natural-gas densities and speeds of sound
ombination of the functional forms of Eqs.(8)–(13)and the
ne-fluid mixture model of Eqs.(14)–(20) is fundamenta

or these results. The one-fluid mixture model is a succe
pproximation to the description of mixture properties

n this work we used it to amend the unsatisfactory pairw
dditivity approximation to the mixture third virial coef
ient that is used in the models with formal mixing ru
or the mixture virial coefficients. As expected, this work
ell for the complex multicomponent mixtures of natural
ystems, but it showed its limitations in the case of bin
ixture densities and mixture second virial coefficients.
Finally, we expect improved results from the use of o

ombination of exponents in the virial-coefficient corre
ions. Also, a better approximation to the mixture th
irial coefficient is needed to improve the predictive ca
ility of models based on formal virial- coefficient mixi
ules.
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List of symbols

a,d,k binary interaction parameters
b coefficient in generalised second virial coefficient

correlations
B second virial coefficient
c coefficient in generalised third virial coefficient cor-

relations
C third virial coefficient; heat capacity
n amount of substance
p pressure
r radial separation between molecules
R universal gas constant (R= 8.31451 J mol−1 K−1)
T temperature
u speed of sound
x mole fraction
Z compression factor

Greek letters
ε energy parameter of model intermolecular potential
ρ amount-of-substance density
σ distance parameter of model intermolecular poten-

tial
Φ function of distance in model intermolecular poten-

tial

S
c
p
r

S
i
m
r
V

A

na
– the
s r the
o

A

A l
c

c-
o

B

with

B0(Tr) = 0.1445− 0.330

Tr
− 0.1385

T 2
r

−0.0121

T 3
r

− 0.000607

T 8
r

, (A.2)

and

B1(Tr) = 0.0637+ 0.331

T 2
r

− 0.423

T 3
r

− 0.008

T 8
r

. (A.3)

The Orbey and Vera[5] correlation for the generalised third
virial coefficient is

C =
(
RT c

pc

)2

[C0(Tr) + ωC1(Tr)], (A.4)

with

C0(Tr) = 0.01407+ 0.02432

T 2.8
r

− 0.00313

T 10.5
r

, (A.5)

and

C1(Tr) = −0.02676+ 0.0177

T 2.8
r

+ 0.04

T 3
r

− 0.003

T 6
r

−0.00228
. (A.6)

A

al
t

T

p

a

1

i nts
a he
c en in
[

A

in-
t l
d

T

uperscripts
critical property

g perfect-gas property
es residual property

ubscripts
,j,k component indices
ix mixture property

reduced property
isochoric property
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ppendix A

.1. Correlations for generalised second and third viria
oefficients

The Tsonopoulos[4] correlation for the generalised se
nd virial coefficient is

=
(
RT c

pc

)
[B0(Tr) + ωB1(Tr)] (A.1)
T 10.5
r

.2. Effective critical constants of quantum gases

The Gunn et al.[12] proposal for the effective critic
emperature, pressure and density is

c = T c
0

1 + 21.8/MT
, (A.7)

c = pc
0

1 + 44.2/MT
, (A.8)

nd

/ρc = vc = vc
0

1 − 9.91/MT
. (A.9)

n which T c
0 , pc

0 and vc
0 are the classical critical consta

t high temperature andM is the molar mass. Values of t
lassical critical constants for quantum gases are giv
6].

.3. Combining rules for pseudo-critical properties

Lee and Kesler[13] proposed combining rules for the
eraction critical temperatureT c

ij and the interaction critica
ensityρc

ij:

c
ij = (1 − kij)(T

c
i T

c
j )1/2

, (A.10)
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wherekij is a binary interaction parameter, and:

ρc
ij = 8


( 1

ρc
i

)1/3

+
(

1

ρc
j

)1/3



−3

. (A.11)

The interaction critical pressure is calculated from:

pc
ij = Zc

ijρ
c
ijRT

c
ij. (A.12)

Also, Lee and Kesler[13] proposed the following correlation
for the interaction critical compression factor:

Zc
ij = 0.291− 0.08ωij. (A.13)

for which the interaction acentric factor is given by

ωij = 1
2(ωi + ωj). (A.14)

In the case of mixtures containing quantum gases, the cor-
rections toT c

ij andpc
ij are[12]:

T c
ij =

(1 − kij)(T c
i T

c
j )1/2

1 + (21.8/MijT )
. (A.15)

and

pc
ij =

Zc
ijρ

c
ijR(1 − kij)(T c

i T
c
j )1/2

. (A.16)
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